A few miles off the coast of Massachusetts, aboard the fishing boat the Miss Emily, chains groaned as they lifted the sodden net out of the water. The multi-hued strands opened, spilling their meager contents onto the deck. “This is definitely a small catch,” said William Hoffman, senior marine biologist with the Massachusetts Department of Fisheries. The scientists and fishermen aboard the boat splashed through the flopping fish, shoveling them onto a conveyor belt and then quickly sorted the catch by species: flounder, hake, sea herring, haddock, lobster.
After sorting the fish, the team tossed them back onto the conveyor belt by species. Hoffman caught each fish as it came off the belt and slid it down the table to his colleague Nick Buchan. Hands protected by thick blue gloves, Buchan grabbed hold of a slippery flounder. He lined its nose up at the end of the electronic measuring board and stamped a small magnet onto the board just where the fish’s tail fin forked. The computer wired to the board blared as it recorded where the magnet landed, locking in the length of the flounder. Buchan seized the fish around its mid-section and tossed it into a nearby orange bucket to be weighed. The whole process took only a few seconds, and Hoffman and Buchan were on to the next fish. 32cm, BEEP. 28cm, BEEP.
The team worked quickly and efficiently, identifying, sexing, sizing, and weighing hundreds upon hundreds of fish. They would repeat this day’s activity multiple times over eight months, in a carefully plotted program to count the diversity of fish in Massachusetts state waters.
Scientists—and fishermen—want to know how many fish are left in the oceans, because the numbers amassed from these types of trawls provide the basis for local and national decisions about how many fish the fishermen are allowed to take out of the water—how much we can eat and how much we have to leave in. Can we strike a balance that maintains viable, sustainable marine populations? The answer comes down to a challenge that seemed straightforward aboard the Miss Emily (so simple, indeed, that by the end of the day we’d even slipped on gloves to help) and yet is actually incredibly difficult to resolve: counting fish.
Figuring out how many fish there are in the sea is an impossible, essential challenge. Marine life provides a crucial source of protein for billions of people around the world, as well as necessary income for people in coastal communities. But the trends are alarming. The World Wildlife Fund estimated in a 2015 report that some commercially important stocks have been reduced by almost 75 percent since the 1970s. If fishing pressure continues unchecked, several species could be wiped out entirely, causing unknown damage to marine ecosystems. At the same time, if governments place restrictions on the industry that are overly conservative, many fishermen could unnecessarily lose their jobs, and untold numbers of people could be deprived of an important food source.
The stakes are huge, the ocean is vast, and the fish won’t stay still, which makes counting them important and exceedingly difficult. For decades, scientists have relied upon counting techniques similar to the one used on the Miss Emily. But now researchers are looking to the latest technologies—artificial intelligence, autonomous submarines, and drones—to develop new methods for quantifying fish populations. In the process, they’re learning much more about the fish themselves. Are better numbers, combined with a richer understanding of marine ecosystems, enough to save both the fish and the humans who depend on them?
Q.24
Which of the following best describes the tone of the passage?
1 Didactic.
2 Reflective.
3 Descriptive.
4 Critical.